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Abstract-A numerical study of time-dependent free convective heat transfer from a solid sphere to an 
incompressible Newtonian fluid has been carried out for Grashof numbers between 0.05 and 12 500 and for 
Prandtl numbers of 0.72, 10 and 100. The energy and vorticity transport equations were solved using 
Peaceman and Rachford’s AD1 method and the stream function equation was solved using point iterative 
successive over-relaxation. From the late-time steady-state solutions it was observed that even at extremely 
low Grashof numbers, weak convection processes were present in the region close to the outer boundary. 
However, it was found that even at moderate Grashof numbers the dominant mode of vorticity transport 

close to the surface was by diffusion. 
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NOMENCLATURE 

dimensionless viscous drag ; 
dimensionless pressure drag; 
dimensionless total drag; 

specific heat at constant pressure; 
modified dimensionless vorticity, de- 

fined by equation (6); 

Grashof number based on the radius of 
the sphere, [R3pg (T, - T x)]/~z; 

gravitational acceleration ; 
average heat transfer coefficient; 
local heat transfer coefficient ; 
dimensionless pressure at the front stag- 
nation point ; 
dimensionless pressure at sphere 
surface ; 
thermal conductivity ; 
number of mesh points in the z 
direction ; 
mesh size in the z direction; 

number of mesh points in the 0 
direction ; 
mesh size in the 8 direction ; 
average Nusselt number, (2Rh)/k ; 
local Nusselt number, (2Rh,,)/k; 
Prandtl number, v/a; 
radius of sphere ; 
Rayleigh number, GrPr ; 
dimensionless radial coordinate ; 
spherical polar coordinates; 
dimensionless temperature ; 
dimensionless time ; 
dimensionless velocity components in 
the z and 0 directions; 
rectangular Cartesian coordinates ; 
modified coordinate defined as z = In Y. 

Greek symbols 

4 thermal diffusivity, k&C,); 

P> volumetric coefficient of expansion with 
temperature ; 

At, dimensionless time-step; 

“@I, convergence criterion for the stream 
function ; 

Y 
6, dimensionless vorticity component in 

the 4 direction; 

8, angular coordinate ; 
“, fluid kinematic viscosity; 

P3 density; 

43 coordinate representing the angle of 
rotation about the axis of symmetry of 
the flow; 

*3 dimensionless stream function ; 
w:, weighting factor for upwind difference 

representation of a first order derivative 
with respect to z; 

Wfb weighting factor for upwind difference 

representation of a first order derivative 
with respect to 0; 

W,’ relaxation factor for the stream 
function. 

Subscripts 

4 mesh point index in the z direction; 

.i? mesh point index in the 0 direction; 
i, j, indices of a mesh point in the flow 

region ; 
% sphere surface ; 
Y_, outer boundary condition. 

Superscripts 

(L), (L)th iteration ; 
u. + 11, (L + 1)th iteration; 
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;+ l/2, 
p lh time-step ; 
(p + 1/2)th time-step; 

p+ 1. (p + 1)th time-step. 

1. IiFTRODlJCTXON 

THE PRO~ESSFS of heat and mass transfer by free 
convection from particles to fluids are of importance 
industrially in connection with combustion, vapori- 
zation, drying, performance of packed catalytic re- 
actors, etc. Furthermore, because of the complexity of 
muItiparticle systems in theoretical studies, a single 
solid sphere, liquid drop or gas bubble is usually 
studied in order to unrested the fund~n~l aspects 
of transfer mechanisms. The solid sphere is the most 
common unit for these studies and the results are 
valuable in the absence of results for multiparticle 
systems. 

The pertinent analytical and experimental studies of 
time-independent free convective heat transfer from a 
sphere at low and moderate Grashof numbers (Gr < 
10”) which have been reported include anaIytica1 
studies [i, 21, analytical and experimental work [3], 
and experimental works [3-91. In most of the in- 
vestigations only the average Nusselt numbers were 
determined, only one [3f obtaining Row patterns and 
temperature distributions about a sphere and then 
only for extremely small Grashof numbers fGr < I .O). 
In a recent paper [lo] the present authors gave 
complete numerical solutions for time-independent 
free convective heat transfer from a solid sphere in the 
range of Grashof number between 0.05 and 50 by 
application of an extrapolated Gauss-Seidel method. 
However, it was observed that the method used could 
not be applied to find solutions for Grashof numbers 
greater than 50. There have been no reports of 
complete analytical or numerical solutions of time- 
dependent or time-independent free convective heat 
transfer from a solid sphere for Grashof numbers 
larger than 50. 

In the present study, the time-dependent 
Navier-Stokes equation for axisymmetric free con- 
vection from a sphere and the continuity equation were 
combined and expressed as a vorticity transport 
equation and a stream function equation. These latter 
two and the energy equation were solved numerically 
and simultaneously using an upwind differencing 
scheme applied to the convective terms of the transport 
equations. The time-dependent vorticity transport and 
energy equations were solved using Peaceman and 
Rachford% alternating direction implicit, fADf), me- 
thod [I I]. The stream function equation tt’as soived 
using a point iterative successive over-relaxation 
method. 

2. MATHEMATXCAL MODEL 

The mathematical model consists of a set of differen- 
tial equations and initial and boundary conditions 
describing time-dependent free convective heat trans- 
fer from a heated solid sphere which is immersed in a 
stagnant Newtonian medium and enclosed by a con- 

FK;. 1. Spherical polar coordinate system. 

centric spherical shell of uniform and unchanging 
temperature. 

To simulate the Row around a solid sphere, the time- 
dependent Navier-Stokes, energy and continuity 
equations were expressed in spherical polar coor- 
dinates. The spherical polar coordinates of the sphere 
are arranged as shown in Fig. I. As shown in the figure, 
the coordinate Y is normal to the surface of the body, 0 
is parallel tn the surface in the flow direction and d, is 
the direction of rotation about the axis of symmetry of 
the flow. For the particular case of streaming flow past 
a stationary sphere with no rotation, the flow around 
the vertical axis is axisymmetric, the component of 
velocity in the 4 direction is zero everywhere, and all 
variabIes are independent of 4. 

The time-dependent Navier-Stokes and the con- 
tinuity equations were combined and expressed as a 
time-dependent vorticity transport and a stream func- 
tion equation set. The derivation of this equation set 
may be found elsewhere [12]. From the definition of 
the vorticity vector 1121 and from the condition of 
axisymmctrical flow, there is only one non-zero com- 
ponent of vorticity, that is in the 4 direction. In 
derivation of Ihe equations it is assumed that the only 
body force operating is that of gravity and that 
temperaturevariations within the fluid are not large, so 
that Roussinesq’s approximation can be applied thus 
enabling the density to be treated as a constant in al1 
terms of the transport equations except the buoyancy 
term. For the same reason, other fruid properties such 
as viscosity, specific heat, and thermal conductivity are 
considered to be constant. 

For ease of obtaining numerical solutions of the 
equations, the variables have been rendered dimen- 
sionless with respect to the radius of the sphere, the 
kinematic viscosity of the fluid at the temperature of 
the outer boundary, and the temperature ditferencc 
between the sphere surface and the outer boundary. It 
was also convenient to transform the equaticms from 
polar coordinates (r, 0) to rectangular coordinates 
(2, 0) by means of the transformation of r = e’. 
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With the above considerations the resulting system well defined as z tends to infinity. However, because of 

of ctimensionless equations in rectangular coordinates limitations on computer storage and computation 

(z, 0) can be written as follows: time, numerical integration cannot be made over too 

large a region, and a finite domain of integration has to 
The velocity components be used. Therefore, the outer boundary condition was 

1 a* 
applied at some finite distance from the sphere surface. 

u = _~_ I 
e2’ sin Q a0 ’ 

(1) The conditions at the outer boundary can be expressed 
as 

1 w 
u0 - 

e”sinQ aZ 

The energy equation 

e2z 
aT 1 

at+--- ( 

a$ a7- a$ aT --- 
eZsin e az ae as aZ ! 

(2) 
Atz=zXforO<0<7r,t>0, 

(10) 
i/j = 0, G = 0, ; = 0, T = 0. 

The initial conditions were as follows : at f = 0 for 0 
< z < z,,o < 0 d 7K: 

II/ =O, [ = 0, G =O, T = To. (11) 

The initial temperature distribution, To, was taken 
(3) to be that of pure radial steady-state conduction 

between the sphere and the surrounding fluid, that is 

The vorticity transport equation 

ezz 2 cot 0G 

-f&rs--2G)1=e2’E2(G) 

+ e2’ sin2 0 Gr 
> 

To = [&]e-’ - L&j]. (12) 

From the distribution of stream function, vorticity 

and temperature other quantities were calculated as 
follows : 

Local Nusselt number. 
_I 

Nu=-20T 
?z :=o’ 

The stream function equation Average Nusselt number. 

where 

and 

e2’ G = e2’E2($) 

G = [e* sin fI 

(5) 

(6) 

a2 a a2 
e2zE2 = a22 - z + s - C&6:. (7) 

Equations (l)-(7) together with the following boun- 

dary and initial conditions were solved numerically : 

Sphere surface: at z = 0 for 0 < 6 < rt, t 2 0. 

I 
:, + 2Gr Te=dz. (15) 
0 

Dimensionless pressure at the sphere surface (surf&e 
pressure ). 

II/ = 0, g = 0, ; = 0, 2 = 0, 
(8) 

K,=K,+2Gr(l -cosH)+?~~[~+T)dH 

(16) 

(13) 

I 
n 

Nu = 112 Nu,, sin 0 d0. (14) 
0 

Dimensionless pressure at the,fiont stagnation point. 

G=(sin@=* T= 1. Dimensionless pressure drag (pressure drag 
?iz2 > coefficient ) 

Axis ofsymmetry : at 0 = 0 and 0 = K for all values of 
z, t > 0. 

s 

I 

CD, = K ,, sin 20d0. (17) 
0 

*=o. c!Lo. aZjl=o. %o, Dimensionless viscous drag (viscous drag coefficient ). 
’ az ’ az2 ’ ae (9) 

aT 
G=O; (=O; dB=0. c,, = 4 (, sin2 HdH. 

Outer boundary. At large distances away from the 
sphere surface, the dependent variables become asymp 
totic to their values in the undisturbed stagnant fluid. 
Mathematically, the conditions at this boundary are 

Dimensionless total drag f total drag coefficient ). 

CD, = CD, + CD,. (19) 

The integrands in equations (15) and (16) were 
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evaluated at 8 = 0 and at z = 0, respectively. For a 
detailed analysis of this section see ref. [13]. 

3. NUMERICAL METHOD 

The set of partial differential equations, energy 
equation (3), vorticity transport equation (4) and 
stream function equation (5), presented in Section 2, is 
non-linear second order elliptic with respect to the 
space variables (z, H). Also equations (3) and (4) are 
parabolic with respect to time. These equations to- 
gether with the associated boundary and initial con- 
ditions given in Section 2 were solved nume~cally. 

The first step in obtaining a numerical solution of 
partial differential equations is to formulate the orig- 
inal equations as finite-difference equations. Basically, 
the domain over which the equations are to be 
integrated, the flow region, is presented by a finite 
number of points or nodes spaced systematically in the 
domain. This is followed by a discretization process 
which is normally carried out using a Taylor’s series 
expansion of a function about a general node and 
relating the value of function at that node to those at 
neighbouring nodes. In the present study a five point 
approximation. involving four neighbouring points, 
has been used and the mesh points were spaced 
uniformly in both the z and 8 directions. The details of 
the method used can be found elsewhere [14-163. 

The time-dependent vorticity transport and energy 
equations were solved using Peaceman and Rachford’s 
alternating direction implicit, (ADI), method [ 111. The 
ADI method makes use ofa splitting of the time-step to 
obtain a multi-dimensional implicit method which 
requires only the inversion of a tridiagonal matrix. 
Roache [16] has given a survey of the early appii- 
cations of the ADI method to fluid dynamics prob- 
lems. In addition to the works surveyed [16], other 
solutions obtained [17-191 support the suitability of 
Peaceman and Rachford’s ADI method for solving the 
vorticity transport and energy equations for flow 
around objects [16]. 

In order to preserve the ‘transportive property’ [ 161 
and to obtain rapid convergence, an upwind differenc- 
ing method was used for the finite-difference repre- 
sentation of the convective terms of the vorticity 
transport and energy equations. A detailed analysis of 
the application of the upwind differencing method for 
the finite-difference representation of convective terms 
of equations is given in ref. [lo]. There are many 
arguments for and against the application of upwind 
d~fferen~ing method (e.g. [16,18,20,21]). However, the 
solutions obtained by other authors (as surveyed [16]) 
for multi-dimensional problems support the use of 
upwind difference scheme. 

As an example of the scheme used, the finite- 
difference approximations of the vorticity transport 
equation when expended into sets of simultaneous 
equations for the time-step p to (p + l/2), in the 0 
direction, can be written as follows: 

C .GJ’*‘Z+C 1J r., I GP?‘2+C .G.i 21 i., 3, !$: = “J” (20) 

where 

Ds = C,i GP- 1 ,j + C,i Gr.j + C,i Gr+ 1 ,j + C,ij 

(21) 

Similarly, the finite-difference approximation of the 
vorticity transport equation when expanded into sets 
of simultaneous equations for the time-step p + l/2 to 
p + 1, in the z direction, is as follows: 

C;iG{.?;%j + C&Gf.;l + c;iG$;+:.j = 0;+“Z(22) 

where 

I)?+‘.2 ZI c’ ,G@li2 + f’ 11 1.J 
.G??l z 

2.t 1.2 

+ iYjj Gf,;,t ;” + C+. (23) 

The coeficients of equations (20)-(23) for backward, 
forward and central differences (w,, or oZ = 0, of, or (L)~ 
= 1 and LoNor (ti2 = 0.5, respectively) may be expressed 
as follows: 

CIj = -b,, - KGijAi(tiij)(l - w,,), (24) 

C,j = f: + 2 + KGijAi($ij) 
‘ 

x (1 - 2w, - 2n cot ej), (25) 

C,j = - b,j + ~GijAi(~ij)~~ (26) 

C,i = b,i - KGijAj($;j)(l - We), (27) 

C,i = f - 2 + KGijAj($ij)(l - 2~, - 2~)~ 
L 

Csi = b,i + xYG,~A~($~~)~,, 

C;j = -czj, 

Cl(ij = 
eh, sin’ 0, Gr 

2mn 
Cn(Ti+s.j - Ti-C.j) 

+ mcotOj(Ti,j+I - Ti,j 

where 

-1 11 (36) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(37) 

(38) 

(39) 

(40) 
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a = 2 + .?_ 
m2 n2' 

aAt 
xi=G’ 

eZ; sin 0. 
KGij = *% 

(42) 

(43) 

Ai(J/ij) = $6 + I .j - ii- I .j* (44) 

Aj($iji = $i.j+ 1 - $i.j- 1’ (45) 

In the calculation of the variable coefficients (24)-(36), 
the most up to date values of the relevant variables are 
used. 

The sets of simultaneous algebraic equations, [such 
as equations (20) and (22)], obtained by the finite- 
difference representation of the vorticity transport and 
energy equations, were solved using Thomas’s elim- 
ination method [22]. 

In the present work the stream function equation, 
equation (5), was solved at any time-step using a point 
iterative successive over-relaxation method [16]. By 
the use of the coefficients (37)-(41), equation (5) was 
expanded as follows : 

where 

+ b,j $P.j+ 1 + b,j $Ij- 1 - Ci Gr,j (46) 

C.-““’ 1-- 
a ’ (47) 

A relaxation factor, we was defined as follows: 

l@j”’ ‘) = lj+“’ + ws(l@j - t@,jL’) (48) 

where the contour (t) refers to the number of suc- 
cessive point iterations performed at the pth time-step, 
and $i,s P W+ *) is the value of the stream function at the 
pth time-step after (L + 1) iterations. The stream 
function values, $$“+ ‘), are resubstituted into equa- 
tion (46) which is then resolved with equation (48) until 
the following convergence criterion is satisfied : 

~l@;‘~+l) - t&y 6 c* (49) 

The numericai integration in equations (13)-( 19) 
were carried out using the trapezoidal rule [23]. The 
gradients involved in equations (13)-(19) and in the 
boundary conditions were evaluated by fitting appro- 
priate polynomials to the calculated values at the 
ne~ghbouring nodes [13]. 

A computer program was developed to solve the 
finite-difference equations. The solutions were ob- 
tained in the form of distributions of temperature, 
vorticity and stream function and were used to cal- 
culate the other quantities required such as local and 
average Nusselt numbers, the pressure distribution on 
the surface of the sphere, and the viscous, pressure, and 
total drag coefficients. The average central processor 
time required to obtain a late-time steady-state so- 
lution was found to be approximately 3.5 h when using 

a CDC-7600 digital computer. However. as was stated 
earlier the solutions obtained are thought to be of 
general interest in a wide number of practical 
applications. 

It will be seen in this paper that the late-time steady- 
state values obtained for the average Nusselt number 
were found to agree reasonably well with those 
obtained experimentally by other workers. However, 
no experimental data are available for comparison 
with other results obtained in the present work such as 
the distributions of surface vorticity, surface pressure 
and the viscous, pressure, and total drag coefficients. 
As a check on the accuracy of the numerical solutions 
in the absence of sufficient experimental data the 
following derivatives were calculated from the so- 
lutions: the first order derivative of temperature with 
respect to 0 along the axis of symmetry; the first order 
derivatives of the stream function along the surface of 
the sphere and the axis of symmetry with respect to 0 
and z; and the first order derivative of vorticity with 
respect to 0 along the axis of symmetry. For al! the 
solutions, the values of the above derivatives were 
calculated and found to have a magnitude of 
10~‘“-lO~zo which was sufficiently close to the re- 
quired value of zero. 

The accuracy of the results obtained and the eco- 
nomy of the procedure used, like any other finite- 
difference method [21], were mainly dependent on the 
mesh sizes, magnitude of the time-step, position of the 
outer boundary, orders of the polynomials used to 
approximate the boundary conditions, convergence 
criteria, and associated relaxation factors. Values for 
these factors were found on the basis of numerical 
experiments and were selected in order to achieve 
convergence while keeping a balance between ae- 
curacy of the solutions, as far as it could be assessed, 
and economy of use of computing facilities. 

In the present work, the values of the constants m, II. 

M and N for all Grashof numbers except a Crashof 
number of 12 500 were set equal to 0.04,6 ,80 and 30, 
respectively. However, for a Grashof number of 12 500 
the values were set equal to 0.04, 6”, 60 and 30, 
respectively. 

The values of the time-steps, relaxation factors and 
convergence criteria for different Grashof numbers are 
presented in Table 1. 

For a detailed analysis of this section see ref. [ 131. 

4. DISCLWION OF RESULTS 

The characteristics displayed by the solutions were 
broadly similar and differed only in detail. Thus, only 
one solution will be discussed fully ; that for a Grashof 
number of 25 and a Prandtl number of 0.72. This 
solution is particularly chosen since its result can be 
compared with the result presented in ref. [lo] (for 
other solutions see ref. [13]). 

The numerical results are presented in terms of 
dimensionless variables. For the solution being con- 
sidered, the late-time steady-state condition was at- 
tained at a dimensionless time of 2.16. 
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Table 1. Main results of the present study as the solutions of the time-dependent equations approach late-time steady-state 
- 

Gr 

0.05 
1 

10 
25 
50 
50 

125 
1250 

12500 

Pr At i:* 
--.__-. 

0.72 0.01 lo-6 
0.72 0.01 1o-6 
0.72 0.005 5 x 10-G 
0.72 0.001 7.5 x 1o-6 
0.72 0.001 2.5 x 1o-5 
100 0.001 2.5 x lo- 5 
0.72 0.001 5 x to-5 
IO 0.0005 
10 O.oGOol 2.5 x :i-” 3 

(a) 

- 

Nu fk Kn 

1.9 2.09 0.49 - 0.49 
1.6 2.34 6.32 - 5.69 
1.5 2.92 37.44 - 33.60 
1.5 3.30 81.59 - 46.05 
1.5 3.82 141.26 - 54.43 
1.5 8.21 122.6 - 57.37 
1.5 4.25 297.28 -61.53 
1.5 9.98 1988.35 - 71.10 
1.3 16.82 12077.34 3904 

c DF c !JP 
~.- -~ 

1.13 0.59 
15.7s 1.95 
78.25 42.36 

146.39 82.62 
236.11 138.18 
195.04 114.61 
448.31 276.20 

1958.01 1386.11 
8700.77 6606.85 

tb) 

FIG. 2. Development of streamlines with time, Gr = 25, Pr = 0.72. case (a): t = 0.1; case (b): t = 0.5; 
case (c): t = 1; case (d): t = 2.16. 

The development with time of the streamlines slightly in the downstream direction as a result of 
starting from a motionless flow field is shown in Fig. 2. convection effects. 
The rising and descending currents generate a circu- Isotherms around the sphere at various dimension- 
latory flow pattern as shown by the streamlines plotted less times are shown in Fig. 3. During the early stages 
in Fig. 2. Case (d) of Fig. 2. shows that the streamlines of simulation, the thickness of the heated region 
at the late-time steady-state conditions are displaced around the solid sphere is almost uniform and heat 
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FIG. 3. Development of isotherms with time, Gr = 25, Pr = 0.72. case (a): t = 0.1; case (b): t = 0.5; case (c): 
t = 1: case (d): t = 2.16. 

transfer takes place mainly by unsteady-state con- 
duction. However, as the simulation proceeds, the 
convective effects increase in magnitude and the iso- 
therms become closer to the surface of the sphere in the 
upstream region and extend further downstream at the 
rear of the sphere. Case (d) of Fig. 3 shows the 
isotherms around the sphere at the late-time steady- 
state condition. 

The generation and development with time of 
vorticity around the solid sphere can be seen in Fig. 4. 

During the early stages of simulation, diffusion is the 
dominant mode of vorticity transport, as shown by 
case (a) of Fig. 4. However, as time proceeds, the effects 
of convection on the distribution of vorticity become 
more important than the effects of diffusion and as can 
be seen in cases (c) and (d) of Fig. 4, the contours are 
displaced in the downstream direction. 

The behaviour of the drag coefficients with time is 

shown in Fig. 5. Both the pressure drag and viscous 
drag coefficients show a smooth increase with time. 

Figure 6 shows the variation of the local NusseIt 
number with time. Since steady-state conduction in a 
finite space is used as the initial condition, the local 

Nusselt number starts from a value of 2.085 which is 
constant around the solid sphere. However, as in- 
tegration proceeds with time, the convective effects 
increase so that the local Nusselt numbers over the 
upstream region of the sphere increase continuously 

towards their late-time steady-state values while the 
local Nusselt numbers over the rear part of the sphere 
first decrease and then increase again to their late-time 
steady-state values as the circulation within the fluid 
becomes more vigorous. 

The variations of surface pressure and surface 
vorticity with time are shown in Figs. 7 and 8, 
respectively. It is seen from Fig. 7 that as time proceeds, 
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(a) 

FIG. 4. 

5= -0.04 

/ 
=-0 I 

= -0.3 
/=-I 

~ 

=-I.5 

=3 

fb) 

00 

Devehqxnent ofvordcity with time, Gr = 25, Pr = 0.72. case (a): t = 0.1 ; case (b): t = 0.5; case (c): 
t = 1; case (d): t = 2.16. 

30 60 I20 I50 180 

FIG. 5. Drag coefficients vs time, EP - 25, Pi- = 0.72. Fit;. 6, Local Nusselt number vs time, Gr = 25, Pr = 0.72. 
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FK. 7. Surface pressure vs time Gr = 25, or = 0.72. FK;. 8. Surface vorticity vs time, Gr = 25, Pr = 0.72. 

the surface pressure increases in the upstream region 
and decreases in the downstream region. Figure 8 
shows that at Grashof number of 25 and a Prandtl 
number of 0.72 the dominant mode of vorticity 

transport very close to the surface is diffusion. 
In addition to the solution just described, solutions 

were also obtained for Grashof numbers of 0.05, 1, 10, 
50, 125 for a Prandtl number of 0.72; for Grashof 
numbers of 1250 and 12 500 for a Prandtl number of 
10; and for a Grashof number of 50 for a Prandtl 
number of 100. 

From the late-time steady-state solutions it was 

observed that even at extremely low Grashof numbers, 
weak convection processes were present in the region 

close to the outer boundary. However, it was found 
that even at moderate Grashof numbers the dominant 
mode of vorticity transport close to the surface of 
sphere was by diffusion. For all the solutions obtained 
it was observed that during the early stages of simu- 
lation the dominant mode ofvorticity transport was by 
diffusion and that heat transfer took place largely by 

unsteady-state conduction. However, as integration 
proceeded with time the effects of convection increased 

until the late-time steady-state solutions were attained. 
It was observed that the drag coefficients reached 

their late-time steady-state values more quickly than 
the other quantities and that the local Nusselt numbers 
took the longest time to reach their late-time steady- 
state values. For this reason the approach to the late- 
time steady-state condition was found to be best 
judged by observing the relative variation of the local 
Nusselt number with time. As the Grashofnumber was 
increased it was observed that the total time taken 
before late-time steady-state conditions were reached 
became shorter. 

e 

The main results of the present study are presented 
in Table 1. From this table it can be seen that as the 

Grashof number was increased it was found to be 
necessary to reduce the time-step, to increase the 
convergence criterion for the stream function and/or 
reduce the relaxation factor for the stream function. 
These changes were necessary in order to obtain 
convergence of the solution. 

The main results obtained from the numerical 
solution of the steady-state equations [lo] are pre- 
sented in Table 2. As can be seen from a comparison of 
Tables 1 and 2, the results obtained from the solutions 
of the time-dependent and the time-independent equa- 
tions are in reasonable agreement for Grashof num- 

bers up to 25. However, as was explained [lo], the 
solution for a Grashof number of 50 obtained from the 

steady-state equations is not reliable. 
Based on the results obtained for average Nusselt 

numbers from this study and the previously mentioned 
time-independent study [lo] the following relation- 
ships were developed : 

Nu = 2 + 0.39 (Ra)0.42 (50) 

for 

0.05 < Gr < 50 

and 

Pr = 0.72 

for 

Nu = 2 + 0.75 (Ru)‘.~~ (51) 

36 ,< Ra ,< 125000, 

50<Gr<12500, 

0.72 ,< Pr < 100. 

Table 2. Main results of steady-state solution [lo] 

Gr Pr NU Ko K, c OF C DP 

0.05 0.72 2.09 0.5 - 0.40 1.17 0.58 
1 0.72 2.39 5.97 - 5.40 16.42 7.58 

10 0.72 2.96 36.07 -31.26 74.88 71.29 
25 0.72 3.32 76.23 -48.69 143.70 87.08 
50 0.72 3.96 118.30 - 12.66 211.20 105.45 
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Table 3. Comparison of average Nusselt numbers for different Grashof numbers for a Prdndtf number of 0.72 

Gr Present 
study 

Average Nusselt number, Nu, from ref. [ ] 

Cl 0] c91 I31 ['I c31 

0.05 2.1 2.09 
I 2.34 2.39 

10 2.89 2.96 
25 3.31 3.32 
50 3.84 3.96 
125 4.31 
1250 6.11 

12500 9.30 

2.32 
2.67 
3.20 
3.51 
3.80 
4.26 
6.03 
9.10 

- ~ -.-. -~ 

Table 3 shows a comparison of the late-time steady- tial equations describing free convective heat transfer 
from the surface of a sphere, the above arguments can 
never be confirmed but can only be contradicted if the 
solutions obtained are physically unrealistic. However, 
the solutions obtained were physically realistic and 
quantitatively reliable as far as could be ascertained 
from a comparison of the predicted results with 
existing data. 

state values of the average Nusselt number obtained in 
the present study as predicted by relationships (50)and 
(51) with the results obtained by other workers from 
their analytical and experimental studies for a Prandtl 
number of 0.72. In this table the results obtained from 
the solutions of time-independent equations [lo] are 
also included. It can be seen that the present solutions 
and the solutions of reference [ 101 predict lower values 
of the average Nusselt number than the experimental 
measllrements. This could be because most experimen- 
tal measurements of free convective heat transfer rates 
are mfluenced by disturbances in the fluid caused by 
external factors and suffer from losses due to con- 
duction and radiation. These factors lead to over- 
estimates of the average Nusselt numbers. 

As stated earlier in this paper, the authors presented 
numerical solutions of steady-state free convective heat 
transfer from a solid sphere in the range of Grashof 
numbers between 0.05 and 50 [lo]” However, as was 
explained in that paper, for a Grashof number of 50 the 
surface vorticity and, as a consequence, the surface 
pressure and the drag coefficients were slightly affected 
by the ~uctuations of the vorticity at the outer 
boundary. To avoid numerical divergence of the 
surface vorticity, it was necessary to use much smaller 
relaxation factors and to increase the values of the 
convergence criteria. Even so, for Grashof numbers 
greater than 50, steady-state solutions could not be 
obtained. This was probably attributable to the 
steady-state method which was adopted in that study. 
Roache [16] has summarised the comparison between 
the iterative steady-state and time-dependent methods 
and concluded that the time-dependent method has 
proved to be generally more successful for viscous flow 
problems than the steady-state method. Since there is 
some confidence in the validity of the time-dependent 
equations of motion and energy, one is inclined to 
believe that a numerical solution which proceeds from 
a physically reasonable initial condition also has 
validity. Therefore, the success of the solution pro- 
cedure developed in the present study may be attri- 
buted to the time-dependent approach which was 
adopted. 

In the absence of mathematical analysis of the 
complete problem, which is not possible due to 
complexity of the set of interdependent partial differen- 

2.43 2.18 2.05 
2.90 2.54 

3.26 
3.73 
4.05 
4.59 
6.60 
10.19 

The solution procedure developed in this work has 
been used to obtain solutions for a restricted range of 
Grashof and Prandtl numbers and has also been 
applied to only one geometrical shape ; the sphere. 
However, as procedure has been shown to provide 
reliable results, without particular difficulty, it could 
probably be used to obtain solutions for problems 
involving different geometries and different values of 
the Grashof and Prandtl numbers. 
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R&urn&La convection libre du transfert de chaleur entre une sphere solide et un fluide Newtonien 
incompressible a ete etudie numeriquement pour des nombres de Grashof compris entre 0.05 et 12500 et 
pour des nombres de Prandtl egaux a 0.72,lO et 100. Les equations de transport d’energie et de tourbillon ont 
tte resolues a l’aide de la methode AD1 de Peaceman et Rachford, et l’equation des fonctions de courant par 
une methode ponctuelle d’iterations successives par relaxation. A I’aide des solutions stationnaires, on a 
observe des phenomenes de convection, meme pour de tres petits nombers de Grashof. De mdme, nous avons 

montre que la diffusion avait une large part au transport des tourbillons, mCme pour des nombres de Grashof 
assez importants. 

NUMERISCHE SIMULATION VON WARMEtiBERTRAGUNGSVORGANGEN DURCH FREIE 
KONVEKTION AN EINER KUGEL 

Zusammenfassung~Eine numerische Studie von zeitabhangigen Warmeiibertragungsvorgangen durch freie 
Konvektion zwischen einer festen Kugel und einem inkompressiblen Newton’schen Fluid wird fur Grashof- 
Zahlen zwischen 0,05 und 12500 und fur Prandtl-Zahlen von 0,71; 10 und 100 durchgefiihrt. Die Energie- 
und Wirbeltransportgleichungen wurden mit der ADI-Methode nach Peaceman und Rachford und die 
Stromfunktionsgleichung mit Hilfe der Uberrelaxationsmethode gel&t. Aus der stationlren Losung war zu 
beobachten, dal3auch bei sehr kleinen Grashof-Zahlen schwache Konvektionsvorgange in der Zone nahe der 
lul3eren Berandung auftraten. Es wurde jedoch gefunden, daR such bei mittleren Grashof-Zahlen der 

Transport an der Obertllche hauptsdchlich durch Diffusion stattfand. 

YMCJIEHHOE MOflEflHPOBAHHE CBO6O~HOKOHBEKTMBHOI-0 
TEIIJIOI-IEPEHOCA OT C@EPbI 

AHWYTa~~-BbmOnHeHO %fCneHHOe wccneAOBaHwe HecTaueoHapHoro CBO6OLIHOKOHBeKTIIBHOrO Tenno- 

“epeHOCa OT TBepnOfi C+epbI K HeCW,MaeMOti HbMTOHOBCKOti KGIIIKOCTR Up&I 3Ha’teHWtX ‘IllCJa 

Fpacro+a OT 0,05 no 12500 a WXJI Hpaenmn, paertbrx 0,72; 10 A 100. Vpaeuemin suepruu w 
r,ef,eHOCa BSXpefi pet”a,,ACb MeTOflOM nepeMeHHbIX HanpaBJIeHHfi n,EMeHa H f%W$Opna, a ypaBHeHHe 

+y~~uue ToKa-riTepauriomrbrM bfeToaob4 c r4cnonb30BaHrieM aepxHeii penaKcauuw. CornacHo nonyqe- 

“HblM B rtOC,teLlHee BpeMs CTatViOHapHbIM p’3IEHBIM YXKe E&W BeCbMa MaJIbIX 3Ha’IeHBPX ‘WCJta 

Fpacro@a B o6nacTa, npsneraromeii K BHemHeii rpaeeue, TiMetoT MeCTO cna6bte KOHBeKTABHbIe 

npoueccbl. OjXHaKO, B LtaHHoa pa6oTe noKa3aH0, ‘iTo naxre npa yMepeHHbrx 3riaqemiax wuta 

rpaCrO+a rtepeHOC BHXpeii B6flA3H nOBepXHOCT54 npOHCXOLWT B OCHOBHOM 38 C’ieT Nl+t$y3Wi. 


