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Abstract—A numerical study of time-dependent free convective heat transfer from a solid sphere to an
incompressible Newtonian fluid has been carried out for Grashof numbers between 0.05 and 12 500 and for
Prandtl numbers of 0.72, 10 and 100. The energy and vorticity transport equations were solved using
Peaceman and Rachford’s ADI method and the stream function equation was solved using point iterative
successive over-relaxation. From the late-time steady-state solutions it was observed that even at extremely
low Grashof numbers, weak convection processes were present in the region close to the outer boundary.
However, it was found that even at moderate Grashof numbers the dominant mode of vorticity transport
close to the surface was by diffusion.
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NOMENCLATURE

dimensionless viscous drag;
dimensionless pressure drag;
dimensionless total drag;

specific heat at constant pressure;
modified dimensionless vorticity, de-
fined by equation (6);

Grashof number based on the radius of
the sphere, [R*Bg (T, — T, )]/v*;
gravitational acceleration;

average heat transfer coefficient ;

local heat transfer coefficient;
dimensionless pressure at the front stag-
nation point;
dimensionless
surface ;
thermal conductivity;

number of mesh points in the z
direction ;

mesh size in the z direction;

number of mesh points in the @
direction ;

mesh size in the 0 direction ;

average Nusselt number, (2Rh)/k;

local Nusselt number, (2Rh)/k;
Prandtl number, v/a;

radius of sphere;

Rayleigh number, GrPr;

dimensionless radial coordinate ;
spherical polar coordinates;
dimensionless temperature ;
dimensionless time;

dimensionless velocity components in
the z and @ directions;

rectangular cartesian coordinates;
modified coordinate defined as z = Inr.

pressure at sphere

Greek symbols

a’

p,

Wy,

Subscripts

i,
J
i J,

N}

Superscripts
(L),
(L +1),
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thermal diffusivity, k/(pC,);

volumetric coefficient of expansion with
temperature ;

dimensionless time-step;

convergence criterion for the stream
function ;

dimensionless vorticity component in
the ¢ direction;

angular coordinate;

fluid kinematic viscosity;

density;

coordinate representing the angle of
rotation about the axis of symmetry of
the flow;

dimensionless stream function ;
weighting factor for upwind difference
representation of a first order derivative
with respect to z;

weighting factor for upwind difference
representation of a first order derivative
with respect to 9,

relaxation factor for the
function.

stream

mesh point index in the z direction;
mesh point index in the 6 direction;
indices of a mesh point in the flow
region;

sphere surface;

outer boundary condition.

(L)th iteration;
(L + 1)th iteration;
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p. pth time-step;
p+ 172, Ap + 1/2)th time-step;
p+ 1. {p + 1)th time-step.

1. INTRODUCTION

THE PROCESSES of heat and miass transfer by free
convection from particles to fluids are of importance
industrially in connection with combustion, vapori-
zation, drying, performance of packed catalytic re-
actors, etc. Furthermore, because of the complexity of
multiparticle systems in theoretical studies, a single
solid sphere, ligmd drop or gas bubble is usually
studied in order to understand the fundamental aspects
of transfer mechanisms. The solid sphere is the most
common unit for these studies and the results are
valuable in the absence of results for multiparticle
systems.

The pertinent analytical and experimental studies of
time-independent free convective heat transfer from a
sphere at low and moderate Grashof numbers (Gr <
10%} which have been reported include analytical
studies [1, 2], analytical and experimental work [3],
and experimental works [4-9]. In most of the in-
vestigations only the average Nusselt numbers were
determined, only one [3] obtaining flow patterns and
temperature distributions about a sphere and then
only for extremely small Grashof numbers {Gr < 1.0).
In a recent paper [10] the present authors gave
complete numerical solutions for time-independent
free convective heat transfer from a solid sphere in the
range of Grashof number between 0.05 and 50 by
application of an extrapolated Gauss-Seidel method.
However, it was observed that the method used could
not be applied to find solutions for Grashof numbers
greater than 50. There have been no reports of
complete analytical or numerical solutions of time-
dependent or time-independent free convective heat
transfer from a solid sphere for Grashof numbers
larger than 50.

In the present study, the time-dependent
Navier-Stokes equation for axisymmetric free con-
vection from a sphere and the continuity equation were
combined and expressed as a vorticity transport
equation and a stream function equation. These latter
two and the energy equation were solved numerically
and simultaneously using an upwind differencing
scheme applied to the convective terms of the transport
equations. The time-dependent vorticity transport and
energy equations were solved using Peaceman and
Rachford’s alternating direction implicit, (ADI)}, me-
thod [11]. The stream function equation was solved
using a point iterative successive over-relaxation
method.

2. MATHEMATICAL MODEL

The mathematical model consists of a set of differen-
tial equations and initial and boundary conditions
describing time-dependent free convective heat trans-
fer from a heated solid sphere which is immersed in a
stagnant Newtonian medium and enclosed by a con-
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F1. 1. Spherical polar coordinate system.

centric spherical shell of uniform and unchanging
temperature.

To simulate the low around a solid sphere, the time-
dependent Navier-Stokes, energy and continuity
gquations were expressed in spherical polar coor-
dinates. The spherical polar coordinates of the sphere
are arranged as shown in Fig. 1. As shown in the figure,
the coordinate r is normal to the surface of the body, #
is paraliel to the surface in the flow direction and ¢ is
the direction of rotation about the axis of symmetry of
the flow. For the particular case of streaming flow past
a stationary sphere with no rotation, the flow around
the vertical axis is axisymmetric, the component of
velocity in the ¢ direction is zero everywhere, and all
variables are independent of ¢.

The time-dependent Navier-Stokes and the con-
tinuity equations were combined and expressed as a
time-dependent vorticity transport and a stream func-
tion equation set. The derivation of this equation set
may be found elsewhere [12]. From the definition of
the vorticity vector [12] and from the condition of
axisymmetrical flow, there is only one non-zero com-
ponent of vorticity, that is in the ¢ direction. In
derivation of the equations it is assumed that the only
body force operating is that of gravity and that
temperature variations within the fluid are not large, so
that Boussinesq's approximation can be applied thus
enabling the density to be treated as a constant in all
terms of the transport equations except the buoyancy
term. For the same reason, other fluid properties such
as viscosity, specific heat, and thermal conductivity are
considered to be constant.

For ease of obtaining numerical solutions of the
equations, the variables have been rendered dimen-
sionless with respect to the radius of the sphere, the
kinematic viscosity of the fluid at the temperature of
the outer boundary, and the temperature difference
between the sphere surface and the outer boundary. Tt
was also convenient to transform the equations from
polar coordinates {r, #) to rectangular coordinates
{z, 6) by means of the transformation of r = €°.
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V/ith the above considerations the resulting system
of dimensionless equations in rectangular coordinates
(z, 6) can be written as follows:

The velocity components

_ 1 oy (
T T e sing 06 )
1 oy
= 2
Y= S ging oz @
The energy equation
,. 0T N 1 oy éT oy orT
PRl b el dtll
ot  e*sinf \dz 06 00 oz
1 /é*Tt o7 o*T oT
= — + cotf— 3
<a~+a+aez+ ae) G)
The vorticity transport equation
oG 1 oy (3G
= — — 2cot G
o T s [62 <09 )
oy (oG
—— (-~ =2G||=e*EXG
(5 -20) |-
oT oT
2z 0Gr{— to— ). 4
+ ¢*%sin? r(a + co 66> 4)
The stream function equation
e G = e¥EX(Y) (%)
where
G = {e*sin 0 (6)
and
o2 0 2 é
e¥*E? = - —+ —5 —cotf—. 7
B ata % O

Equations (1)—(7) together with the following boun-
dary and initial conditions were solved numerically:

Sphere surface: at z=0for0 < 8 < n,t = 0.

Y oy Y
=0,—-=0,--=0,— =0,
v 0z o0 06* (8)
62
G=Csin6=%, T=1.

Axis of symmetry:at@ = 0and 8 = = for all values of
z,t 2 0.

oy 3%y oy

=0; -—=0; —5=0, —=0,

v oz az? 20 ©)
G=0; {=0; T _o

R

Outer boundary. At large distances away from the
sphere surface, the dependent variables become asymp-
totic to their values in the undisturbed stagnant fluid.
Mathematically, the conditions at this boundary are
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well defined as z tends to infinity. However, because of
limitations on computer storage and computation
time, numerical integration cannot be made over too
large a region, and a finite domain of integration has to
be used. Therefore, the outer boundary condition was
applied at some finite distance from the sphere surface.
The conditions at the outer boundary can be expressed
as

Atz=z for0<8<mnt>=0,

y=0, G=0, {=0, T=0

(10)

The initial conditions were as follows: at t = 0 for 0
<2<:2,,0<0<n:

v=0, (=0, G=0, T=T° (1)

The initial temperature distribution, 7°, was taken
to be that of pure radial steady-state conduction
between the sphere and the surrounding fluid, that is

o _ e e 1
T° = [—(e:wx— 1)]6 [!—(e:f — l):|' 12)

From the distribution of stream function, vorticity
and temperature other quantities were calculated as
follows:

Local Nusselt number.

Nu—= —2-—
. iz

(13)

z=0

Average Nusselt number.

Nu = 1/2J‘ Nuysin 6 do. (14)
0

Dimensionless pressure at the front stagnation point.

e 0f S WG LlY
Ko=4| Sdz- R A
° L 0 L ezaz<a02 :
+2Grf're2dz. (15)
0

Dimensionless pressure at the sphere surface (surface
pressure ).

f ay
K, —K0+2Gr(l—cost9)+2f< >d0
14} (’32
(16)
drag

Dimensionless drag

coefficient )

pressure ( pressure

Cpp = J K, sin 20d6. (17)
0

Dimensionless viscous drag (viscous drag coefficient ).

Cor = 4J ¢, sin? 6d6. (18)
(o]

Dimensionless total drag (total drag coefficient ).
Cpr = Cpp + Cpp (19)

The integrands in equations (15) and (16) were
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evaluated at 6 = 0 and at z = 0, respectively. Fora
detailed analysis of this section see ref. {13].

3, NUMERICAL METHOD

The set of partial differential equations, energy
equation (3), vorticity transport equation (4) and
stream function equation (5), presented in Section 2, is
non-linear second order elliptic with respect to the
space variables (z, §). Also equations (3} and (4) are
parabolic with respect to time. These equations to-
gether with the associated boundary and initial con-
ditions given in Section 2 were solved numerically.

The first step in obtaining a numerical solution of
partial differential equations is to formulate the orig-
inal equations as finite-difference equations. Basically,
the domain over which the equations are to be
integrated, the flow region, is presented by a finite
number of points or nodes spaced systematically in the
domain. This is followed by a discretization process
which is normally carried out using a Taylor’s series
expansion of a function about a general node and
relating the value of function at that node to those at
neighbouring nodes. In the present study a five point
approximation, involving four neighbouring points,
has been used and the mesh points were spaced
uniformly in both the z and 8 directions. The details of
the method used can be found elsewhere [14-16].

The time-dependent vorticity transport and energy
equations were solved using Peaceman and Rachford’s
alternating direction implicit, (ADI), method [11]. The
ADI method makes use of a splitting of the time-step to
obtain a multi-dimensional implicit method which
requires only the inversion of a tridiagonal matrix.
Roache [16] has given a survey of the early appli-
cations of the ADI method to fluid dynamics prob-
lems. In addition to the works surveyed [16], other
solutions obtained [17--19] support the suitability of
Peaceman and Rachford’s ADI method for solving the
vorticity transport and energy equations for flow
around objects [16].

In order to preserve the ‘transportive property’ [16]
and to obtain rapid convergence, an upwind differenc-
ing method was used for the finite-difference repre-
sentation of the convective terms of the vorticity
transport and energy equations. A detailed analysis of
the application of the upwind differencing method for
the finite-difference representation of convective terms
of equations is given in ref. {10}. There are many
arguments for and against the application of upwind
differencing method (e.g. [ 16, 18, 20,217). However, the
solutions obtained by other authors (as surveyed [ 16])
for multi-dimensional problems support the use of
upwind difference scheme.

As an example of the scheme used, the finite-
difference approximations of the vorticity transport
equation when expended into sets of simultaneous
equations for the time-step p to (p + 1/2), in the 0
direction, can be written as follows:

Cl Gp*l 2 + CZ; Gp+1 2 + C3] Gf;j+112

ti—1

D} (20)
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where

DY = C\; Gl ;+ Coi G+ C5 Gy + Cyy5
(21)

Similarly, the finite-difference approximation of the
vorticity transport equation when expanded into sets
of simultaneous equations for the time-step p + 1/2 to
p + 1, in the z direction, is as follows:

G, s 4t szG?}l + C'sin):li = DP12(22)
where
Dgﬂ»lzw 3 Gf}j : +Clszp+12
+ Oy Gl + Cay 23)

The coefficients of equations (20)—(23) for backward,
forward and central differences (w,0r , = 0, wyor w,
= land w,or w, = 0.5, respectively ) may be expressed
as follows:

Cyy= —bs; — KGiA ;)1 — ), (24)
1
x (1 — 2wy — 2ncot ), (25)
Ci; = —b;; + KG Al o, (26)
Cii= by — KG AW — w), Q1)
1 2
Czi = }Z‘ - a—— + KG!JAJ(w‘J)( 20, - 2m),
(28)
C - bh + KGU J(wll}w" (29)
C’” = - CU’ (30)
2
5= _C2i+3{—f (31)
5=~y (32)
Jl,- = - Clis (33)
2
’2i=—C2i+—f, (34)
5= Cs (35)
eZisin? @, Gr
Caej=““‘“§;1j’—["('rs+;.j =T p)
+mecotB,(T, ;. — Ti‘jwl)] {36)
where
(37}

>, (38)

(39)

(40)
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2 2
a = ;n—z -+ *’;‘2‘, (41)
aAt
Xi= o (42)
e%sin 8,
= e 43
KG; 2amn ’ “43)
Ai(‘#”i;) = 1f/e+1.j - lﬁi—x.j, (44)
Aj(!f:’ij} = ‘L’f,;u - tfli.j’l' (45}

In the calculation of the variable coefficients (24)-(36),
the most up to date values of the relevant variables are
used.

The sets of simultaneous algebraic equations, [such
as equations (20) and (22)], obtained by the finite-
difference representation of the vorticity transport and
energy equations, were solved using Thomas’s elim-
ination method [22].

In the present work the stream function equation,
equation (5), was solved at any time-step using a point
iterative successive over-relaxation method [16]. By
the use of the coefficients (37)-{41), equation (5) was
expanded as follows:

Po=bul byl

+ by ¥y + byl — CGE; (46)
where
e
Ci= . @7
a
A relaxation factor, @, was defined as follows:
PN = gD+ o, (1, — UESD) @8)

where the contour (L) refers to the number of suc-
cessive point iterations performed at the pth time-step,
and Y7+ 1 is the value of the stream function at the
pth time-step after (L + 1) iterations. The stream
function values, y7{"* ), are resubstituted into equa-
tion (46) which is then resolved with equation (48) until
the following convergence criterion is satisfied :

WD = uPl < 5

The numerical integration in equations (13}-(19)
were carried out using the trapezoidal rule [23]. The
gradients involved in equations (13)-(19) and in the
boundary conditions were evaluated by fitting appro-
priate polynomials to the calculated values at the
neighbouring nodes [13].

A computer program was developed to solve the
finite-difference equations. The solutions were ob-
tained in the form of distributions of temperature,
vorticity and stream function and were used to cal-
culate the other quantities required such as local and
average Nusselt numbers, the pressure distribution on
the surface of the sphere, and the viscous, pressure, and
total drag coefficients. The average central processor
time required to obtain a late-time steady-state so-
tution was found to be approximately 3.5 h when using

(49)
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a CDC-7600 digital computer. However, as was stated
earlier the solutions obtained are thought to be of
general interest in a wide number of practical
applications.

It will be seen in this paper that the late-time steady-
state values obtained for the average Nusselt number
were found to agree reasonably well with those
obtained experimentally by other workers. However,
no experimental data are available for comparison
with other results obtained in the present work such as
the distributions of surface vorticity, surface pressure
and the viscous, pressure, and total drag coefficients.
As a check on the accuracy of the numerical solutions
in the absence of sufficient experimental data the
following derivatives were calculated from the so-
lutions: the first order derivative of temperature with
respect to § along the axis of symmetry ; the first order
derivatives of the stream function along the surface of
the sphere and the axis of symmetry with respect to ¢
and z; and the first order derivative of vorticity with
respect to § along the axis of symmetry. For all the
solutions, the values of the above derivatives were
calculated and found to have a magnitude of
107 '%-1072% which was sufficiently close to the re-
quired value of zero.

The accuracy of the results obtained and the eco-
nomy of the procedure used, like any other finite-
difference method [21], were mainly dependent on the
mesh sizes, magnitude of the time-step, position of the
outer boundary, orders of the polynomials used to
approximate the boundary conditions, convergence
criteria, and associated relaxation factors. Values for
these factors were found on the basis of numerical
experiments and were selected in order to achieve
convergence while keeping a balance between ac-
curacy of the solutions, as far as it could be assessed,
and economy of use of computing facilities.

In the present work, the values of the constants m, n,
M and N for all Grashof numbers except a Grashof
number of 12 500 were set equal to 0.04, 67, 80 and 30,
respectively. However, for a Grashof number of 12 500
the values were set equal to 0.04, 6°, 60 and 30,
respectively.

The values of the time-steps, relaxation factors and
convergence criteria for different Grashof numbers are
presented in Table 1.

For a detailed analysis of this section see ref. [13].

4. DISCUSSION OF RESULTS

The characteristics displayed by the solutions were
broadly similar and differed only in detail. Thus, only
one solution will be discussed fully ; that for a Grashof
number of 25 and a Prandtl number of 0.72. This
solution is particularly chosen since its result can be
compared with the result presented in ref. [10] (for
other solutions see ref. [13]).

The numerical results are presented in terms of
dimensionless variables. For the solution being con-
sidered, the late-time steady-state condition was at-
tained at a dimensionless time of 2.16.
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Table 1. Main results of the present study as the solutions of the time-dependent equations approach late-time steady-state

Gr Pr At £y W, Nu Ko K, Cor Cop
0.05 0.72 0.01 107¢ 1.9 2.09 0.49 —-049 113 0.59
1 0.72 0.01 10-¢ 1.6 2.34 6.32 —5.69 15.75 795
10 0.72 0.005 5x107¢ 1.5 292 3744 —33.60 78.25 42.36
25 0.72 0.001 75% 107 1.5 3.30 81.59 —46.05 146.39 82.62
50 0.72 0.001 25%x107° 1.5 382 141.26 ~54.43 236.11 138.18
50 100 0.001 25x107% 1.5 8.21 122.6 ~57.37 195.04 114.61
125 0.72 0.001 5% 107° 1.5 4.25 297.28 ~-61.53 44831 276.20
1250 10 0.0005 1073 1.5 998 1988.35 -71.10 1958.01 1386.11
12500 10 000001 25x1073 1.3 16.82 12077.34 3904 8700.77 6606.85

(a)

{c) (d)

FiG. 2. Development of streamlines with time, Gr = 25, Pr = 0.72. case (a): ¢t = 0.1; case (b): t = 0.5;
case (c): t =1;case (d): ¢t = 2.16.

The development with time of the streamlines slightly in the downstream direction as a result of
starting from a motionless flow field is shown in Fig. 2.  convection effects.
The rising and descending currents generate a circu- Isotherms around the sphere at various dimension-
latory flow pattern as shown by the streamlines plotted  less times are shown in Fig. 3. During the early stages
in Fig. 2. Case (d) of Fig. 2. shows that the streamiines  of simulation, the thickness of the heated region
at the late-time steady-state conditions are displaced around the solid sphere is almost uniform and heat
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(a)

(c)
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{b)

(@

F1G. 3. Development of isotherms with time, Gr = 25, Pr = 0.72.case (a): t = 0.1;case(b): ¢ = 0.5; case (c):
t=1;case(d): ¢t = 2.16.

transfer takes place mainly by unsteady-state con-
duction. However, as the simulation proceeds, the
convective effects increase in magnitude and the iso-
therms become closer to the surface of the sphere in the
upstream region and extend further downstream at the
rear of the sphere. Case (d)} of Fig. 3 shows the
isotherms around the sphere at the late-time steady-
state condition.

The generation and development with time of
vorticity around the solid sphere can be seen in Fig. 4.
During the early stages of simulation, diffusion is the
dominant mode of vorticity transport, as shown by
case (a) of Fig. 4. However, as time proceeds, the effects
of convection on the distribution of vorticity become
more important than the effects of diffusion and as can
be seen in cases (c) and (d) of Fig. 4, the contours are
displaced in the downstream direction.

The behaviour of the drag coefficients with time is

shown in Fig. 5. Both the pressure drag and viscous
drag coefficients show a smooth increase with time.

Figure 6 shows the variation of the local Nusselt
number with time. Since steady-state conduction in a
finite space is used as the initial condition, the local
Nusselt number starts from a value of 2.085 which is
constant around the solid sphere. However, as in-
tegration proceeds with time, the convective effects
increase so that the local Nusselt numbers over the
upstream region of the sphere increase continuously
towards their late-time steady-state values while the
local Nusselt numbers over the rear part of the sphere
first decrease and then increase again to their late-time
steady-state values as the circulation within the fluid
becomes more vigorous.

The variations of surface pressure and surface
vorticity with time are shown in Figs. 7 and 8,
respectively. Itis seen from Fig. 7 that as time proceeds,



1684

FiG. 4. Development of vorticity with time, Gr = 25, Pr = 0.72. case{a): ¢t = 0.1 ;case (b): t = 0.5; case {c}):

F. GreoorLa and A. R. H, CORNISH

®)

(d)

t=1;case (d): t = 2.16.

(a)
(c)
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Fi6. 5. Drag coefficients vs time, Gr = 25, Pr = 0.72.

4 4

Fi1G. 6. Local Nusselt number vs time, Gr = 25, Pr = 0.7
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100

"
120

180

F1c. 7. Surface pressure vs time Gr 25, Pr = 0.72.

the surface pressure increases in the upstream region
and decreases in the downstream region. Figure 8
shows that at Grashof number of 25 and a Prandtl
number of 0.72 the dominant mode of vorticity
transport very close to the surface is diffusion.

In addition to the solution just described, solutions
were also obtained for Grashof numbers of 0.05, 1, 10,
50, 125 for a Prandtl number of 0.72; for Grashof
numbers of 1250 and 12 500 for a Prandtl number of
10; and for a Grashof number of 50 for a Prandtl
number of 100.

From the late-time steady-state solutions it was
observed that even at extremely low Grashof numbers,
weak convection processes were present in the region
close to the outer boundary. However, it was found
that even at moderate Grashof numbers the dominant
mode of vorticity transport close to the surface of
sphere was by diffusion. For all the solutions obtained
it was observed that during the early stages of simu-
lation the dominant mode of vorticity transport was by
diffusion and that heat transfer took place largely by
unsteady-state conduction. However, as integration
proceeded with time the effects of convection increased
until the late-time steady-state solutions were attained.

It was observed that the drag coefficients reached
their late-time steady-state values more quickly than
the other quantities and that the local Nusselt numbers
took the longest time to reach their late-time steady-
state values. For this reason the approach to the late-
time steady-state condition was found to be best
judged by observing the relative variation of the local
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32

t=2.16

241

=05

=01

55
FiG. 8. Surface vorticity vs time, Gr = 25, Pr = 0.72.

The main results of the present study are presented
in Table 1. From this table it can be seen that as the
Grashof number was increased it was found to be
necessary to reduce the time-step, to increase the
convergence criterion for the stream function and/or
reduce the relaxation factor for the stream function.
These changes were necessary in order to obtain
convergence of the solution.

The main results obtained from the numerical
solution of the steady-state equations [10] are pre-
sented in Table 2. As can be seen from a comparison of
Tables 1 and 2, the results obtained from the solutions
of the time-dependent and the time-independent equa-
tions are in reasonable agreement for Grashof num-
bers up to 25. However, as was explained [10], the
solution for a Grashof number of 50 obtained from the
steady-state equations is not reliable.

Based on the results obtained for average Nusselt
numbers from this study and the previously mentioned
time-independent study [10] the following relation-
ships were developed:

Nu = 2 + 0.39 (Ra)®*? (50)
for
005 < Gr <50
Pr=0.72
and
Nu =2 + 0.75(Ra)*** (51)
for

Nusselt number with time. As the Grashof number was 36 < Ra < 125000,
increased it was observed that the total time taken
. . <
before late-time steady-state conditions were reached 30 < Gr < 12,500,
became shorter., 0.72 < Pr < 100.
Table 2. Main results of steady-state solution [10]
Gr Pr Nu K, K, Cor Cpp
0.05 0.72 2.09 0.5 —040 1.17 0.58
1 0.72 2.39 597 —5.40 16.42 7.58
10 0.72 2.96 36.07 —31.26 74.88 71.29
25 0.72 332 76.23 —48.69 143.70 87.08
50 0.72 3.96 118.30 —12.66 211.20 105.45

HMT 25:11 - E




1686

F. Groora and A. R. H. CornisH

Table 3. Comparison of average Nusselt numbers for different Grashof numbers for a Prandt! number of 0.72

Average Nusselt number, Nu, from ref. [ ]

Gr Present

study [10] [8] 7] [3]
0.05 2.1 2.09 2.32 243 2.18 2.05

1 2.34 2.39 2.67 2.90 2.54

10 2.89 2.96 320 3.26

25 331 332 3.51 3.73

50 3.84 396 3.80 4.05

125 431 426 4.59

1250 6.11 6.03 6.60

12 500 9.30 9.10

10.19

Table 3 shows a comparison of the late-time steady-
state values of the average Nusselt number obtained in
the present study as predicted by relationships (50)and
(51) with the results obtained by other workers from
their analytical and experimental studies for a Prandtl
number of 0.72. In this table the results obtained from
the solutions of time-independent equations [10] are
also included. It can be seen that the present solutions
and the solutions of reference [ 10] predict lower values
of the average Nusselt number than the experimental
measurements. This could be because most experimen-
tal measurements of free convective heat transfer rates
are influenced by disturbances in the fluid caused by
external factors and suffer from losses due to con-
duction and radiation. These factors lead to over-
estimates of the average Nusselt numbers.

As stated earlier in this paper, the authors presented
numerical solutions of steady-state free convective heat
transfer from a solid sphere in the range of Grashof
numbers between 0.05 and 50 [10]. However, as was
explained in that paper, for a Grashof number of 50 the
surface vorticity and, as a consequence, the surface
pressure and the drag coefficients were slightly affected
by the fluctuations of the vorticity at the outer
boundary. To avoid numerical divergence of the
surface vorticity, it was necessary to use much smaller
relaxation factors and to increase the values of the
convergence criteria. Even so, for Grashof numbers
greater than 50, steady-state solutions could not be
obtained. This was probably attributable to the
steady-state method which was adopted in that study.
Roache [16] has summarised the comparison between
the iterative steady-state and time-dependent methods
and concluded that the time-dependent method has
proved to be generally more successful for viscous flow
problems than the steady-state method. Since there is
some confidence in the validity of the time-dependent
equations of motion and energy, one is inclined to
believe that a numerical solution which proceeds from
a physically reasonable initial condition also has
validity. Therefore, the success of the solution pro-
cedure developed in the present study may be attri-
buted to the time-dependent approach which was
adopted.

In the absence of mathematical analysis of the
complete problem, which is not possible due to
complexity of the set of interdependent partial differen-

tial equations describing free convective heat transfer
from the surface of a sphere, the above arguments can
never be confirmed but can only be contradicted if the
solutions obtained are physically unrealistic. However,
the solutions obtained were physically realistic and
quantitatively reliable as far as could be ascertained
from a comparison of the predicted results with
existing data.

The solution procedure developed in this work has
been used to obtain solutions for a restricted range of
Grashof and Prandtl numbers and has also been
applied to only one geometrical shape; the sphere.
However, as procedure has been shown to provide
reliable results, without particular difficulty, it could
probably be used to obtain solutions for problems
involving different geometries and different values of
the Grashof and Prandtl numbers.
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Résumé—La convection libre du transfert de chaleur entre une sphére solide et un fluide Newtonien
incompressible a été étudié numériquement pour des nombres de Grashof compris entre 0.05 et 12500 et
pour des nombres de Prandtl égaux a 0.72, 10 et 100. Les équations de transport d’énergie et de tourbillon ont
été résolues a l'aide de la méthode ADI de Peaceman et Rachford, et I'équation des fonctions de courant par
une méthode ponctuelle d’itérations successives par relaxation. A I'aide des solutions stationnaires, on a
observé des phénoménes de convection, méme pour de trés petits nombers de Grashof. De méme, nous avons
montré que la diffusion avait une large part au transport des tourbillons, méme pour des nombres de Grashof
assez importants.

NUMERISCHE SIMULATION VON WARMEUBERTRAGUNGSVORGANGEN DURCH FREIE
KONVEKTION AN EINER KUGEL

Zusammenfassung—Eine numerische Studie von zeitabhangigen Wirmetibertragungsvorgingen durch freie
Konvektion zwischen einer festen Kugel und einem inkompressiblen Newton’schen Fluid wird fiir Grashof-
Zahlen zwischen 0,05 und 12500 und fiir Prandtl-Zahlen von 0,71; 10 und 100 durchgefiihrt. Die Energie-
und Wirbeltransportgleichungen wurden mit der ADI-Methode nach Peaceman und Rachford und die
Stromfunktionsgleichung mit Hilfe der Uberrelaxationsmethode geldst. Aus der stationdren Ldsung war zu
beobachten, daB auch bei sehr kleinen Grashof-Zahlen schwache Konvektionsvorginge in der Zone nahe der
dufleren Berandung auftraten. Es wurde jedoch gefunden, daf3 auch bei mittleren Grashof-Zahlen der
Transport an der Oberfliche hauptsichlich durch Diffusion stattfand.

YUCJIEHHOE MOJEJIUPOBAHUE CBOBOJHOKOHBEKTUBHOI'O
TENJIOITEPEHOCA OT C®EPHI

AHNOT1MSA—BEINOTHEHO YHCIEHHOE HCCIIeJOBaHHE HECTALIHOHAPHOrO cBOGONHOKOHBEKTHBHOTO TEILIO-
nepeHoca OT TBepaoOi cdepbl K HeCKHMaeMOH HbIOTOHOBCKOH JKMIKOCTH NPH 3HAYEHHAX YMCIA
I'pacroga ot 0,05 no 12500 u uucen INpanarns, pasueix 0,72; 10 u 100. YpaBHeHHs 3IHEPrHH H
NepeHoca BHXPE pelliajIiCh METOIOM MEPeMEHHbIX HarnpassieHnit TTucmena u Paudopaa, a ypaBHeHHe
(DYHKIIHH TOKa—UTEPAUMOHHBIM METOIOM C HCIIOIb30BaHHEM BepxHe# penakcaumu. CornacHo mnonyde-
HHBLIM B MOC/IC[IHEE BpeMs CTALUHOHAPHBIM DELICHHAM YXe MPH BECbMa MalblX 3HA4eHHAX 4YHCNA
I'pacroda B obxnacTu, mpunerarollieif x BHEIUHeH IpaHHlE, HMEIOT MECTO CJlabble KOHBEKTHBHbIE
npouecchl. OaHako, B JaHHOH paboTe MOKa3aHO, YTO Jaxe NpPH YMEPEHHLIX 3HAYEHHAX YHCIA
I'pacroda nepeHoc suxpeil BOIM3H NOBEPXHOCTH IPOMCXOAMT B OCHOBHOM 3a cdeT auddy3nn.



